📊 Measure of Position (Statistics)

Last Updated: Jan 2026


Measure of Position tells us where a data value lies relative to the rest of the data.

  • Helps in ranking, comparison, and distribution analysis

🗣 Hinglish Tip: Measure of position = data me tum kis jagah khade ho (top, middle, bottom)

There are three main measures of position:

  1. Percentiles
  2. Quartiles
  3. Interquartile Range (IQR)

Percentiles

The k-th percentile (Pk) is the value below which k% of observations lie.

  • It is divided data into 100 equal parts.An each part is percentile represent position of data.
  • 50th percentile = Median
  • 90th percentile = Top 10% cutoff

Formula (Ungrouped Data)

Position = (k / 100)(n + 1)

IF Position in fraction,

Result = lowerPosition + fractionValue*(upperPosition - lowerPosition) like Position = 2.25, lowerPosition = 2, upperPosition = 3, fractionValue = 0.25

Where:

  • k = percentile number
  • n = total observations

Example

Data: 5, 7, 10, 12, 15, 18, 20, 25 Find P25

StepCalculationResult
nTotal values8
Position(25/100) × (8+1)2.25
ValueBetween 2nd & 3rd≈ 7.75

Quartiles

Quartiles divide data into 4 equal parts.

QuartileMeaning
Q125% data below
Q250% (Median)
Q375% data below

Formula (Ungrouped)

Qₖ = k(n + 1) / 4

Where k = 1, 2, 3


Example

Data: 5, 7, 10, 12, 15, 18, 20, 25

QuartilePositionValue
Q1(1×9)/4 = 2.25≈ 7.75
Q2(2×9)/4 = 4.5≈ 13.5
Q3(3×9)/4 = 6.75≈ 19.5

🗣 Hinglish Tip: Q1 = lower data, Q2 = beech ka data, Q3 = upper data


Interquartile Range (IQR)

IQR measures the spread of middle 50% data.

IQR = Q3 − Q1
  • Use for outlier detection
    • Lower bound = Q1 - 1.5IQR
    • Upper bound = Q3 + 1.5IQR
    • Outlier = Value > Upper bound or Value < Lower bound

Example

From above:

  • Q3 = 19.5
  • Q1 = 7.75
IQR = 19.5 − 7.75 = 11.75

🗣 Hinglish Tip: Interquartile Range = middle 50% data ka failaav