🔁 Rotation Transformation
Last Updated: Jan 2026
A Rotation Transformation turns a vector or object around the origin (or a fixed point) by a given angle θ, without changing its size or shape.
- Length preserved
- Shape preserved
- Direction changes by angle θ
🗣 Hinglish Tip: Rotation = object ko ghumaana, size same rehta hai
Rotation moves a point/vector anticlockwise or clockwise by an angle θ.
- Positive θ → Anti-clockwise
- Negative θ → Clockwise
- Standard rotation is about the origin
Rotation in 2D (About Origin)
1.Rotation Normal Form
X′ = Xcosθ − Ysinθ
Y′ = Xsinθ + Ycosθ
2.Rotation Matrix (Anti-clockwise)
R(θ) =
[ cosθ −sinθ
sinθ cosθ ]
Transformation Formula
v⃗′ = R(θ) v⃗
Rotation of a Point
Rotate point P(2, 1) by 90° anti-clockwise.
Known values
cos 90° = 0, sin 90° = 1
Matrix
R(90°) =
[ 0 −1
1 0 ]
Calculation
| Step | Expression | Result |
|---|---|---|
| x′ | 0·2 − 1·1 | −1 |
| y′ | 1·2 + 0·1 | 2 |
Result:
P'(-1, 2)
Standard Rotation Angles (Must Remember)
| Angle | Result of (x, y) |
|---|---|
| 90° | (−y, x) |
| 180° | (−x, −y) |
| 270° | (y, −x) |
| 360° | (x, y) |
Clockwise Rotation
Clockwise rotation by θ = Anti-clockwise rotation by −θ
Matrix
R(−θ) =
[ cosθ sinθ
−sinθ cosθ ]
Example
Rotate (3, 4) by 90° clockwise
(x', y') = (y, -x) = (4, -3)
Rotation About a Point (h, k)
Steps
- Translate point to origin
- Rotate
- Translate back
Formula
x′ = h + (x − h)cosθ − (y − k)sinθ
y′ = k + (x − h)sinθ + (y − k)cosθ
Rotation Using Homogeneous Coordinates
Matrix Form
[ cosθ −sinθ 0
sinθ cosθ 0
0 0 1 ]
Used in graphics & robotics to combine rotation + translation.
|| राम नाम सत्य है ||