📐 Estimation in Statistics
Last Updated: Jan 2026
Estimation is the process of using sample data to estimate an unknown population parameter.
Population parameters like:
- Mean (μ)
- Proportion (p)
- Variance (σ²)
are usually unknown, so we estimate them using samples.
🗣 Hinglish Tip: Estimation = sample ke basis par population ka value guess karna (scientific way me)
Types of Estimation
There are two main types:
- Point Estimation
- Interval Estimation (Confidence Interval)
Point Estimation
Point estimation gives a single numerical value as an estimate of a population parameter.
Common Point Estimators
| Population Parameter | Estimator | Notation |
|---|---|---|
| Population Mean | Sample Mean | x̄ |
| Population Variance | Sample Variance | s² |
| Population Proportion | Sample Proportion | p̂ |
Example: Point Estimation of Mean
- Sample data:
10, 12, 14, 16, 18 - Sample size:
n = 5
Solution
x̄ = (10 + 12 + 14 + 16 + 18) / 5
x̄ = 70 / 5
x̄ = 14
✔ Point estimate of population mean = 14
⚠ Limitation:
- No idea about accuracy or reliability
- No range given
Interval Estimation (Confidence Interval)
Interval estimation gives a range of values within which the population parameter is likely to lie.
This range is called a Confidence Interval (CI).
Confidence Interval (CI)
A confidence interval is written as:
Lower Limit < Parameter < Upper Limit
Common confidence levels:
- 90%
- 95%
- 99%
🗣 Hinglish Tip: 95% CI = hume 95% confidence hai ki true mean is range ke andar hoga
Confidence Interval for Mean (σ known)
Formula
CI = x̄ ± Z (σ / √n)
Where:
x̄= sample meanσ= population standard deviationn= sample sizeZ= Z-value (from normal table)
Z-values (Common)
| Confidence Level | Z-value |
|---|---|
| 90% | 1.645 |
| 95% | 1.96 |
| 99% | 2.58 |
Example
- Sample mean:
x̄ = 50 - Population standard deviation:
σ = 10 - Sample size:
n = 100 - Confidence level: 95%
Step 1: Identify Z-value
From table:
Z = 1.96
Step 2: Calculate Standard Error
σ / √n = 10 / √100 = 10 / 10 = 1
Step 3: Calculate Margin of Error
Margin of Error = Z × Standard Error
Margin of Error = 1.96 × 1 = 1.96
Step 4: Construct Confidence Interval
Lower Limit = 50 − 1.96 = 48.04
Upper Limit = 50 + 1.96 = 51.96
✅ Final Answer
48.04 < μ < 51.96
✔ We are 95% confident that population mean lies between 48.04 and 51.96