Pandas DataFrame Basics
Last Updated: 27st August 2025
- A DataFrame is a 2D table (rows × columns) in Pandas.
- Think of it like an Excel sheet or an SQL table.
- It has:
- Rows (index/labels)
- Columns (labeled headers)
- Values (data stored inside)
Hinglish Tip 🗣: DataFrame poora Excel sheet jaisa hota hai.
✏ Creating a DataFrame
1. From Dictionary
import pandas as pd
data = {
"Name": ["Amit", "Priya", "Rahul", "Sneha"],
"Age": [20, 22, 21, 19],
"Marks": [85, 90, 78, 88]
}
df = pd.DataFrame(data)
print(df)
2. From List of Dictionaries
import pandas as pd
data = [
{"Name": "Amit", "Age": 20, "Marks": 85},
{"Name": "Priya", "Age": 22, "Marks": 90},
{"Name": "Rahul", "Age": 21, "Marks": 78},
]
df = pd.DataFrame(data)
print(df)
3. From List of Lists
import pandas as pd
data = [
["Amit", 20, "Delhi"],
["Priya", 22, "Mumbai"],
["Rahul", 21, "Kolkata"],
]
df = pd.DataFrame(data, columns=["Name", "Age", "City"])
print(df)
4. From Series
import pandas as pd
s1 = pd.Series([1, 2, 3], name="RollNo")
s2 = pd.Series(["A", "B", "C"], name="Grade")
df = pd.concat([s1, s2], axis=1)
print(df)